COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Environment				
ACADEMIC UNIT	Department of Environment				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	133KEY SEMESTER 7				
COURSE TITLE	ECOSYSTEM	DYNAMICS			
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	i	CREDITS	
Lectures		2			
Laboratory		1			
Total credits				3	
COURSE TYPE	Skills develo	oment			
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO	-				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://www.env.aegean.gr/spoudes/proptychiakes-				
	spoudes/programma-spoudon/dynamiki-oikosystimaton/				

(2) LEARNING OUTCOMES

Learning outcomes

On successful completion of the course students should be able to demonstrate understanding of:

- 1. The importance of models in understanding ecosystem dynamics
- 2. The meaning and use of plant functional traits
- 3. The flows of energy, water, carbon and nutrients in plants and ecosystems
- 4. The biotic relationships between plants and their importance for ecosystem dynamics
- 5. Temporal vegetation changes and interactions with disturbances
- 6. Spatial vegetation changes

Additionally, students will be able to:

- 7. Quantify and use basic ecosystem variables
- 8. Use R to apply some fundamental analysis of ecosystem data

General Competences

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations Team Work Working independently Integration of theory with practice

(3) SYLLABUS

Theory

- 1. Introduction: Systems, Models and Ecosystem Dynamics
- 2. Describing Individuals ab Species: Plant Functional Traits and Strategies
- 3. Allometry Stoichiometry Scalling
- 4. Fluxes f Energy and Water in Plants and Ecosystems
- 5. Fluxes of Carbon in Plants and Ecosystems
- 6. Nutrients in Plants and Ecosystems
- 7. Competition, Facilitation and Assembly Rules
- 8. Regeneration and Mortality / Vegetation Change and Disturbances
- 9. Spatial patterns and Species Distribution Models
- 10. Temporal Patterns and Ecosystem Dynamics Models

Field Work

At least one visit at a permanent study plot, where students make biometric and plant growth measurements. These data are subsequently used in the lab for data analysis

Lab Work (Data Analysis and code development)

Lab1 Empirical modelling of net primary productivity

Lab2 Allometry and plant trait covariation

Lab3 A simple mechanistic model of ecosystem productivity

Lab4 Species distribution modelling and climate change projections

The aim of the field and lab work is to familiarize students with:

- some basic ecosystem measurements in the field
- the development of theoretical models of species distribution and dynamics
- the integration of field measurements with ecological models

the use of model to project the effects of climate change on biodiversity

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-face,		
USE OF INFORMATION AND	Use of ICT in teaching, laboratory education, communication		
COMMUNICATIONS TECHNOLOGY	with students		
TEACHING METHODS	Activity	Semester workload	
	Lectures	30	
	Laboratory practice	12	
	Fieldwork	8	
	Essay writing	40	

	Study	60	
	Course total	150	
STUDENT PERFORMANCE			
EVALUATION	Labwork		
	4 essays – code development [40%]		
	Exams		
	short-answer questions [40%]		
	problem solving [20%]		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
Chapin III, Matson & Vitousek (2011). Principles of Terrestrial Ecosystem Ecology - Related academic journals:
Ecological Modelling Global Change Biology Ecosystems