COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Environment				
ACADEMIC UNIT	Department of Environment				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	EY5859	SEMESTER 6			
COURSE TITLE	Applied Mathematics and Numerical Analysis				
INDEPENDENT TEACHI	INDEPENDENT TEACHING ACTIVITIES				CREDITS
	Lectures 1				
	Laboratory exercises 2				
	Total credits 5			5	
COURSE TYPE	Skills develo	oment			
PREREQUISITE COURSES:	Mathematics				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://www.env.aegean.gr/spoudes/proptychiakes- spoudes/programma-spoudon/mathimata/efarmosmena- mathimatika/				

(2) LEARNING OUTCOMES

Learning outcomes

- To learn and choose different computational numerical methods to solve assessments related to Physical Sciences
- To differentiate the characteristics of numerical vs analytical methods and determine the most appropriate to solve specific problems (knowledge, analysis and implementation)
- To apply mathematical theory by running code written in advanced programming language associated with environmental issues (problem analysis, definition of parameters and variables, physical interpretation, constraints and requirements etc)
- To learn how to use the mathematical theory and structure to express classical physical problems (e.g. volume through interval, exponential change through differential equations)
- Address a given natural application by analyzing, planning, composing, developing the solution
- To interpret the result and propose/support a solution based on the problem's outcome

General Competences

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations

Decision-making

Working independently

Working in an interdisciplinary environment	

(3) SYLLABUS

Numerical analysis and Advanced Programming Languages

Solving System of Linear Equations

Linear Algebra (Eigenvalues and Eigenvectors)

Integral Calculus

Applications of Integral Calculus to Natural Sciences

Ordinary Differential Equations

Systems of Differential Equations

Numerical Solving of Differential Equations

Partial Differential Equations

Monte-Carlo methods and applications

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face to face			
USE OF INFORMATION AND	E-class			
COMMUNICATIONS TECHNOLOGY	Laboratory education with programming language			
TEACHING METHODS	Activity	Semester workload		
	Lectures	13		
	Laboratory practice 26			
	Study and analysis of	50		
	bibliography			
	Tutorials	25		
	Implementation of	40		
	laboratory exercises			
	Course total	154		
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek			
	Methods of evaluation			
	Implementation of Laboratory exercises 20% Problem solving 30%			
	Problem solving 30% Code implementation and running in			
	advanced programming language 50%			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
- 1. Finney R.L., Giordano F.R., Weir M.D., 2012. Απειροστικός Λογισμός (ενιαίος τόμος). Πανεπιστημιακές Εκδόσεις Κρήτης.
- 2. Logan D.J., 2009. Εφαρμοσμένα Μαθηματικά. Πανεπιστημιακές Εκδόσεις Κρήτης.
- 3. Τραχανάς Σ., 2001. Συνήθεις διαφορικές εξισώσεις. Πανεπιστημιακές Εκδόσεις Κρήτης.
- 4. Φωκιανός Κ., Χαραλάμπους Χ. 2010. Εισαγωγή στην R (Πρόχειρες Σημειώσεις). Πανεπιστήμιο Κύπρου
- 5. Καρλής Δ., Ντζούγρας Ι. 2015. Εισαγωγή στον Προγραμματισμό και στη Στατιστική Ανάλυση με R. Εκδόσεις Κάλλιπος (www.kallipos.gr).
- 6. Παπαιωάννου Σ., Βοζικης Χ., 2015. Αριθμητική Ανάλυση. Εκδόσεις Κάλλιπος (www.kallipos.gr).
- 7. Τσίτσας Ν., 2015. Εφαρμοσμένα Μαθηματικά. Εκδόσεις Κάλλιπος (www.kallipos.gr).
- 8. Χαραλάμπους Χ.Μ.Α., Φωτιάδης Α., 2015. Μια εισαγωγή στη Γραμμική Άλγεβρα. Εκδόσεις Κάλλιπος (www.kallipos.gr).
- Related academic journals:

Applied Mathematics and Computation Archives of Computational Methods in Engineering Environmental Modelling and Software