COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Environment				
ACADEMIC UNIT	Department of Environment				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	232KEY	EY SEMESTER 6			
COURSE TITLE	Aquatic Chemi	istry			
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		CREDITS	
Lectures		3			
Laboratory/Tutorials		3			
Total credits				6	
COURSE TYPE	Special backgro	ound			
PREREQUISITE COURSES:	Chemistry				
LANGUAGE OF INSTRUCTION and	Greek				
EXAMINATIONS:					
IS THE COURSE OFFERED TO					
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://www.env.aegean.gr/studies/undergraduate-				
	degree/curriculum/aquatic-chemistry-2/				

(2) LEARNING OUTCOMES

Learning outcomes

On successful completion of the course students will:

- have gained knowledge about the fundamental concepts of chemical thermodynamics, with emphasis to the chemical equilibrium
- have gained knowledge about the different types of reactions that are important in natural water systems (acid-base, complexation, precipitation-dissolution, reduction-oxidation, and solid-solution interface reactions)
- have gained knowledge about the concepts of ionic strength of solutions, and of the concentrations, activity, activity coefficients and normality of dissolved species in aquatic solutions
- be able to develop the mathematical equations of mass balance, charge balance, proton balance and equilibrium constants for systems at equilibrium
- be able to produce algebraic solutions of the composition of aquatic solutions at equilibrium
- have gained an understanding of the processes that govern the behavior of inorganic species in aquatic systems
- be able to interpret graphical presentation of water composition data (pC pH, pe pH graphs, etc)
- have gained an understanding of the dissolved carbon system, of alkalinity and of pH determination in natural water systems

General Competences

The course aims at providing the degree-holder with general competences regarding:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Working in an interdisciplinary environment
- Production of inductive thinking

(3) SYLLABUS

- Introduction concentration units normality ionic strength activity
- Laws of Thermodynamics
- Chemical equilibrium
- Chemical equilibrium solution methods: analytical, graphical pC vs. pH diagrams
- Acids, bases, pH, buffer solutions, buffer capacity
- The carbonate open system, alkalinity
- Complexation reactions
- Precipitation and dissolution reactions, stability diagrams
- Redox reactions: introduction to redox chemistry
- Redox reactions: equilibrium calculations
- Redox Potential (pe) pe-pH diagrams
- Solid-water interface reactions: Ion exchange, adsorption

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION AND	YES		
COMMUNICATIONS TECHNOLOGY			
TEACHING METHODS	Activity	Semester workload	
	Lectures	13 weeks x 3 h/week = 39 h	
	Tutorials	13 weeks x 3 h/week = 39 h	
	Study	13 weeks x 4 h/week = 52 h	
	Problem solving	8 weeks x 3 h/week = 24 h	
	Course total	154	
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek		
	 Methods of evaluation: Final exam in the form of multiple choice questions, and problem solving, via Moodle: 100% of total grade 		

Specifically-defined evaluation criteria are given in
Moodle: https://aegeanmoodle.aegean.gr/course/
view.php?id=2056#section-0

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Nikolaidis N. (2005). Aquatic Chemistry. Ziti Publisher (in greek)
- Brezonik P. L. and Arnold W. A. (2011). Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic Systems. Oxford

- Related academic journals:

- Water Research
- Aquatic Geochemistry